高中数学学业水平考知识点有哪些
锥形母线 l,高h和基圆的半径形成一个直径三角形,关于圆锥的计算问题,它通常归结为解决这个直角三角形,尤其是关系 l2=h2+R2。
高二数学能力测试知识点总结复数定义
我们把形式写成 a+bi(a,b 为实数的数称为复数,其中 a 称为实部,b 称为虚部,我被称为虚数单位。当虚部为零时,这个复数可以视为实数;当 z 的虚部不等于 0 时,当实部为零时,z 通常被称为纯虚数。复域是实域的代数闭包,也就是说,任何具有复数系数的多项式总是在复数域中有根。
复数表达
虚数与任何事物无关,是绝对的,所以匹配表达式是:
a=a+ia 是实部,我是虚部
复数算术
加法规则:(a+bi)+(c+di)=(a+c)+(b+d)i;
减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法规则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
划分规则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,换句话说,数字中没有复数。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。
复数和几何
①几何形式
复数z=a+bi是复平面上的点z(a,b) 好的。这种形式允许借助图来研究复数问题。复数理论也可以倒过来解决一些几何问题。
②向量形式
复数 z=a+bi 使用原点 O(0,0) 作为起点,Z点(a,b) 终点的向量 OZ 表示。这种形式允许对复杂算术进行适当的几何解释。
③三角形
复数 z=a+bi 转换为三角形形式
数学学术水平考试知识点总结集合之间的基本关系
1.“包含”关系 - 子集
注意:有两种可能性 (1) A 是 B 的一部分,(2) A 和 B 是同一个集合。
相反:集合 A 不包含在集合 B 中,或集合 B 不包含集合 A,表示为 AB 或 BA
2.“平等”关系(5≥5,5≤5,那么 5=5)
例子:让 A={_2-1=0}乙={-1,1}“元素是一样的”
综上所述:对于两组 A 和 B,如果集合 A 的任何元素是集合 B 的元素,同时,集合 B 的任何元素都是集合 A 的元素,我们说集合 A 等于集合 B,这是:A=B
①任何集合都是它自己的一个子集。爱亚
②真子集:如果 AíB,然后 A1B 说集合 A 是集合 B 的真子集,记为 AB(或 BA)
③如果AíB,比克,然后AíC
④如果AíB同时是BíA,那么A=B
3.没有元素的集合称为空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集的真子集
本文地址:http://www.oh.55jiaoyu.com/show-275268.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦
推荐文档
- 11.往年大连中考满分是多少
- 12.为什么说学播音毁一生,原因有哪些
- 13.淘宝店铺的优质好评语大全
- 14.考研可改变第一学历吗、专科考研可以改变第一学历吗
- 15.民学网查出的学历国家承认吗(民学网查出的学历国家承认吗是真的吗)
- 16.往年轻薄商务笔记本电脑推荐-商务轻薄本性价比排行
- 17.承德护理职业学院(承德护理职业学院2023年招生计划)
- 18.wreak是什么意思wreak的翻译(wake,area是什么意思中文翻译)
- 19.电子科技大学A+类学科名单有哪些(含A、B、C类学科名单)
- 20.systematic是什么意思systematic的翻译(systematically是什么意思中文翻译)
- 21.leant是什么意思leant的翻译(lean,on什么意思中文意思)
- 22.华南农业大学是几本大学,华南农业大学是一本还是二本
- 23.包头中考考试科目时间预测安排,包头中考考哪几门考哪些课程
- 24.高考430分能上什么大学,430分高考能报啥学校
- 25.朱自清的散文代表作有什么(朱自清的散文代表作有什么散文集有什么散文诗集有什么)
- 26.浙江有几所大学是985和211,全国985和211大学名单汇总
- 27.i5,1155G7和R5,5600U哪款好-对比评测
- 28.荷兰什么叫-荷兰弟为什么叫荷兰弟,出演蜘蛛侠原因曝光
- 29.警察警衔工资改革新政策及新方案【全文】解读
- 30.电大专科(电大专科毕业论文)
- 31.广东省高级技工学校官网
- 32.广州大学专科
- 33.大连陆军学院,原大连陆军学院校址现在什么是什么学校
- 34.亲们,谁给一份南京大学的研究生招生简章?(河海大学
- 35.他日若遂凌云志全诗及出处
- 36.铜绿的化学式是什么有哪些性质
- 37.「佛山市顺德养正西山学校初中部」往年录取分数线
- 38.公办本科(公办本科和民办本科有什么区别)
- 39.外交学院是名牌大学吗
- 40.往年湖南高考成绩排名一分一段表
- 41.全国有8所烟草院校是哪些(这4所大学门槛低)
- 42.私人垄断资本主义基本概念是私人垄断资本主义
- 43.难以启齿,这8部影片可以一看(性教育适合看的影片)
- 44.美国独立战争的性质爆发战争的原因是什么
- 45.往年东莞市高中排名前十最新
- 46.大朗网络教育(大朗教育)
- 47.往年甘肃省高中排名最好的高中
- 48.逻辑思维训练有哪些方法优秀训练方法推荐
- 49.浙江大学教务管理系统
- 50.人类的动物老师有哪些这属于什么学科
- 51.往年山西高考状元榜_山西历届高考理科状元和文科状元
- 52.往年北京舞蹈学院艺术类招生简章招生人数及专业
- 53.航空最好的5个专业就业前景如何
- 54.太原科技大学怎么样及评价好不好太原科技大学口碑如何
- 55.满招损谦受益这句话的意思是什么出自哪
- 56.舍本逐末发生在什么时期含义是什么
- 57.女孩子首选十大专业什么专业适合女生
- 58.国防生是什么意思指的是什么
- 59.河南省三本学院有哪些2018最新三本院校名单
- 60.往年龙岩高中学校排名榜单龙岩十大优秀高中
- 51.四至的意思_四至是什么意思_四至的近义词_反义词_读音
- 52.三互法的意思_三互法是什么意思_三互法的近义词_反义词_读音
- 53.复赛的意思_复赛是什么意思_复赛的近义词_反义词_读音
- 54.九草的意思_九草是什么意思_九草的近义词_反义词_读音
- 55.注册会计师考试成绩保留几年 分数线是多少
- 56.中级经济师必须一年通过吗 成绩可以保留多久
- 57.成考学费多少钱一年 收费标准是什么
- 58.函授本科考研困难吗 难度大吗
- 59.专升本必须专业对口吗
- 60.非全日制本科的出路在哪里 有没有用
- 61.上海戏剧学院学费多少钱一年-各专业收费标准
- 62.广东省司法警校招生条件(含招生专业)
- 63.四川省轻工工程学校成都校区怎么样_是公办还是民办
- 64.2022创业项目排行榜前十名有哪些(低成本赚钱的10个小生意)
- 65.桂林理工大学是985还是211大学?
- 66.北海职业学院宿舍条件怎么样,有空调吗(含宿舍图片)
- 67.广州市医药职业学校2022年招生计划
- 68.西安铁路职业技术学院学费多少钱一年-各专业收费标准
- 69.齐鲁师范学院宿舍条件怎么样,有空调吗(含宿舍图片)
- 70.四川省职业技术学院地址在哪里

